

NC Strategic Transportation Corridors: Vision Plan

Baseline and Future Year Mobility Conditions
NCDOT

April 2020

Corridor U: U.S. 74

Notice

This document and its contents have been prepared and are intended solely as information for NCDOT and use in relation to this report.

WS Atkins, Inc. assumes no responsibility to any other party in respect of or arising out of or in connection with this document and/or its contents.

This document has 53 pages including the cover.

Document History

Revision	Purpose description	Originated	Checked	Reviewed	Authorized	Date
Rev 1.1	DRAFT #2	CRG	TDB	JWP	CW	24-03-2020
Rev 1.2	DRAFT #3	CRG	TDB	JWP	CW	08-04-2020

Client Signoff

Client	NCDOT
Project	Corridor U: U.S. 74
Job number	100066466
Client signature / date	

Contents

Chap	oter		Page
1.	Overv	riew and Project Background	5
1.1.	Overv	iew of Strategic Transportation Corridors	5
1.2.	Corrid	or Description	5
2.	Highw	vay Mobility	5
2.1.		ng Conditions Analysis	5
2.2.		e Conditions Analysis	9
2.3.		ty Measures	16
3.		nt Mobility	21
3.1.		Type Totals	22
3.2. 3.3.	Modal	nodity Comparison, 2015 and 2045	22 24
3.4.		rading Partners – by Volume and Value	25
3.5.	-	n Trade	28
Appe	ndices		33
Apper	ndix A.	NCDOT Level of Service D Standards for Systems Level Planning	34
Tables			
Table		U.S. 74 Mobility Segments	7
Table	2.	Segment Capacities and Travel Times	9
Table	3.	2040 E+C Scenario Projects	10
Table	4.	2040 Recommended Scenario Projects	11
Table	5.	Volume-to-Capacity Ratios by Scenario	13
Table	6.	2015/2040 NCSTM E+C Comparison	14
Table	7.	Base Year (BY) and Future Year (FY) Conditions, MPO Model Output	15
Table	8.	Projected Growth Rates by Segment	16
Table	9.	Volume-to-Capacity Ratios by Scenario	17
Table	10.	Average Travel Speed and Travel Time by Scenario	18
Table	11.	VMT and VHT by Scenario	19
Table	12.	Highway Mobility Summary	19
Table	13.	Top Regional Trading Partners	26

_					
— 1		11	r	\sim	0
	ıu	u		ᆮ	Э.

Figure 1.	Corridor Segments	8
Figure 2.	Highway Mobility Summary	20
Figure 3.	U.S. 74 and CSX line	21
Figure 4.	Freight Flow Totals, 2015	22
Figure 5.	Modal Freight Flows by Volume, 2015	23
Figure 6.	Modal Freight Flows by Value, 2015	23
Figure 7.	Commodity Volumes, 2015 and 2045	24
Figure 8.	Commodity Values, 2015 and 2045	25
Figure 9.	Trading Regions	26
Figure 10.	Top Trading Partners by Volume, 2015 and 2045	27
Figure 11.	Top Trading Partners by Value, 2015 and 2045	28
Figure 12.	Foreign Trade Freight Flows by Mode and Volume, 2015	29
Figure 13.	Foreign Trade Freight Flows by Mode and Value, 2015	29
Figure 14.	Foreign Trade Commodity Volumes, 2015 and 2045	30
Figure 15.	Foreign Trade Commodity Values, 2015 and 2045	31
Figure 16.	Foreign Trade Partners by Volume, 2015 and 2045	31
Figure 17.	Foreign Trade Partners by Value, 2015 and 2045	32

Overview and Project Background

This memorandum presents base and future year mobility analyses for Corridor U of the North Carolina Strategic Transportation Corridors (STC).

1.1. Overview of Strategic Transportation Corridors

In 2015, the North Carolina Department of Transportation (NCDOT) identified a network of key multimodal transportation corridors called Strategic Transportation Corridors to support smart planning, help set long-term investment decisions, and ensure that North Carolina's economic prosperity goals are achieved. The STCs are intended to promote transportation system connectivity, provide high levels of mobility, and improve access to important state and regional activity centers. A key element in the advancement of the STCs is the development of corridor master plans, to identify a high-level corridor mobility vision and associated corridor improvement action strategies.

The purpose of the master plan is to:

- identify a mobility vision and broad improvement strategies for an entire corridor,
- guide improvements and development in a manner that defines a long-term vision and performance level for the corridor, and
- help protect the corridor's key functions as defined in the corridor profiles.

1.2. Corridor Description

The 284-mile Corridor U – U.S. 74 serves southwest North Carolina from I-26 in Polk County (west of Gastonia) to U.S. 117 in Wilmington. U.S. 74 is the primary access to the Port of Wilmington, traversing the state's southern tier counties and the Charlotte metropolitan area. U.S. 74 carries high truck volumes for the entire length of the corridor and high passenger volumes from Shelby to Monroe. U.S. 74 overlaps Corridor H (Future I-74) for 91 miles from Rockingham to Columbus County. The corridor includes the CSX rail line from the state port at Wilmington through Charlotte to its junction with Corridor D (U.S. 321) in Rutherford County. The corridor is used as both a regional and statewide connection to major employment centers, airports, and health centers.

2. Highway Mobility

Highway Mobility was analyzed for U.S. 74 for existing and future conditions based on the relationship of travel speed, congestion, and travel time. Existing conditions data was based on NCDOT traffic count data, GIS data, and third-party data (Google Maps satellite and travel time data). Future conditions analysis was based on the NC Statewide Travel Demand Model (NCSTM), Regional and Small Area Travel Demand Models, the Statewide Transportation Improvement Program (STIP), and Transportation Plans for communities through the corridor.

2.1. Existing Conditions Analysis

Existing conditions analysis was completed using 2018 NCDOT Average Annual Daily Traffic (AADT) Segment Data, 2019 NCDOT Route Characteristics Data, the NCSTM, and third-party data, including Google Maps. This section presents the process of identifying corridor segments and preparing mobility measures.

2.1.1. Definition of Segments

To manage the analysis of the project corridor, the corridor was divided into mobility segments. These segments represent sections that are generally homogenous and/or represent a uniform cross-section of roadway. The process of identifying segments included the review of the following attributes along the corridor:

- Major changes in roadway characteristics (cross-section, facility type, lanes)
- NCDOT Divisional Boundaries
- Interstate Crossings
- Metropolitan Planning Organization (MPO) Model boundaries
- Urban/rural transition

Segment breaks were not created for every occurrence of these characteristics: for example, small segments were avoided unless it was justified based on the uniqueness of the roadway attributes in that section. Although speed limits were a consideration, other factors were considered more heavily due to the frequency of speed limit changes.

A total of 18 segments were identified for U.S. 74, as shown in **Table 1** and **Figure 1**. These segments varied in length from 2 miles to 39 miles. Analysis was completed for these segments based on AADT information, NCDOT systems level planning capacities, NCSTM analysis, and MPO model analysis.

Average 2018 AADT is based on NCDOT AADT segment data, which contains different segments than the mobility segments previously defined for U.S. 74. To determine the mobility segment's AADT, the 2018 NCDOT AADT data was averaged based on length of the AADT segments within each mobility segment. 2018 AADT ranges and average AADT are presented in **Table 1**.

Table 1. U.S. 74 Mobility Segments

Segment	From	То	Length (miles)	Division	2018 AADT Range	Average 2018 AADT
201	I-26	SR 1168/Mooresboro	31	12/13/14	14,500-26,500	98,220
202	SR 1168/Mooresboro	Bus 74/Shelby	7	12	20,000-37000	73,680
203	Bus 74/Shelby	Buffalo Creek/Shelby	7	12	29,500-44,500	39,860
204	Buffalo Creek/Shelby	I-85	10	12	36,000-40,500	18,800
205	I-85	I-485/Wilkinson Blvd	21	10/12	86,000-149,000	14,200
206	I-485/Wilkinson Blvd	I-77/I-277	6	10	25,000-40,000	22,910
207	I-77/I-277	I-277/U.S. 74	2	10	69,500-112,000	17,220
208	I-277/U.S. 74	U.S. 74 Bypass/Monroe	13	10	54,000-112,000	16,860
209	U.S. 74 Bypass/Monroe	Stegall Rd E of Marshville	22	10	18,000-70,500	16,690
210	Stegall Rd E of Marshville	Bus 74/Rockingham W	29	10	15,000-29,000	16,450
211	Bus 74/Rockingham W	Bus 74/Rockingham E	16	8	8,800-17,500	42,500
212	Bus 74/Rockingham E	Bus 74 Laurinburg W	10	8	20,500-26,000	38,950
213	Bus 74 Laurinburg W	SR 2220 Broadridge Road (E of I-95)	39	6/8	13,500-24,000	98,220
214	SR 2220 Broadridge Road (E of I-95)	N.C. 242	9	6	14,500-20,000	73,680
215	N.C. 242	Bus 74 E/Whiteville	16	6	13,500-20,000	39,860
216	Bus 74 E/Whiteville	Lanvale Rd/SR 4126 (E of I-140)	36	3/6	12,500-30,000	18,800
217	Lanvale Rd/SR 4126 (E of I-140)	23rd St/Wilmington	10	3	22,000-79,000	14,200
218	23rd St/Wilmington	U.S. 117/College Rd Wilmington	3	3	36,500-40,000	22,910

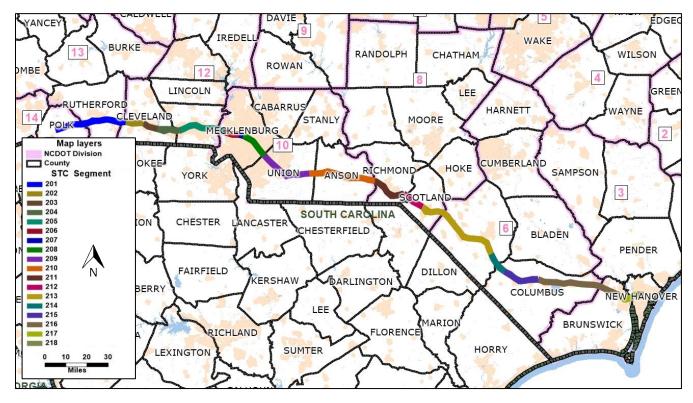


Figure 1. Corridor Segments

2.1.2. Segment Capacity and Travel Time

Typical planning-level highway capacity was developed for each segment along the corridor using the predominant cross-section representative of each segment. Capacities are based on NCDOT TPD's **Level of Service D Standards for Systems Level Planning**, updated 10/14/2011 as shown in **Appendix A**. Segment facility type, typical number of lanes, area type, percent trucks, terrain, and travel speed were used to identify the daily planning-level capacity for comparison against existing traffic. Segment capacities are shown in **Table 2**.

Travel times were calculated based on a weighted average of posted speeds for each segment (by length), existing volume-to-capacity ratios, and a volume-delay curve similar to what is used in the NCSTM. **Table 2** presents the travel time needed to fully utilize each segment. As a point of comparison, Google Maps travel times were identified for each segment to provide "observed" ranges based on third party data.

Table 2. Segment Capacities and Travel Times

Segment	Facility Type	Typical Speed	Lanes	Median Type	Area Type	Planning Capacity	Travel Time (Google Maps)	2018 Travel Time (Est.)
201	Expressway	65	4	Divided	Rural	54,800	26-30	29
202	Expressway	55	4	Divided	Suburban	55,800	8-12	8
203	Boulevard	45	4	Divided	Suburban	36,600	9-18	12
204	Expressway	65	4	Divided	Suburban	57,100	10	9
205	Freeway	65	6	Divided	Urban	106,320	18-22	22
206	Boulevard	45	6	Divided	Urban	42,800	12-30	10
207	Freeway	55	6	Divided	Urban	92,900	4-12	3
208	Boulevard	45	6	Divided	Urban	52,800	16-35	37
209	Boulevard	45	4	Divided	Suburban	36,600	28-55	44
210	Boulevard	55	4	Divided	Rural	45,200	30-40	34
211	Expressway	65	4	Divided	Suburban	53,300	12-16	14
212	Expressway	55	4	Divided	Rural	54,800	14-18	11
213	Expressway	65	4	Divided	Rural	56,100	30-40	36
214	Expressway	55	4	Divided	Rural	56,100	8-10	10
215	Expressway	65	4	Divided	Rural	56,100	14	15
216	Boulevard	55	4	Divided	Rural	49,000	35-40	41
217	Expressway	55	4	Divided	Suburban	57,100	10-14	11
218	Boulevard	55	6	Divided	Urban	64,900	3-6	3

2.2. Future Conditions Analysis

Future conditions analysis was completed using growth rates developed for the corridor based on historical count data, the NCSTM, and relevant regional, MPO, and small area models. Two future scenarios were analyzed:

- 2040 Existing plus Committed (E+C): Existing network plus committed (in the 2020-2029 STIP with either Right-of-Way/Construction funding) corridor projects
- 2040 Recommended (Metropolitan Transportation Plan [MTP]/Comprehensive Transportation Plan [CTP]):
 E+C plus recommended MTP/CTP projects

Typically, these projects are on the corridor itself; however, if the project is on a parallel facility and is of regional significance, it was included in the future conditions analysis. For each scenario, annual growth rates for each segment were prepared to project 2018 AADT to 2040. Using this information, future volume-to-capacity (V/C), travel time, average speed, vehicle-miles traveled (VMT), and vehicle-hours traveled (VHT) were calculated for each segment and the entire corridor.

2.2.1. Committed and Recommended (MTP/CTP) Projects

For the 2040 E+C scenario, committed projects are those which were programmed in the 2020-2029 STIP that are regional in nature. **Table 3** shows projects included in the 2040 E+C evaluation. In the 2040 NCSTM, these projects were included in the analysis, along with other projects statewide that were included in the 2040 E+C network.

Table 3. 2040 E+C Scenario Projects

STIP ID	Segment	Counties	Roadway	Location/Description
I-5719	205	Gaston	I-85	From N.C. 273 to U.S. 321. Widen to 8 Lanes.
U-2509	208	Mecklenburg	U.S. 74 (Independence Blvd)	From Idlewild Rd to I-485. Widen and add Express Lanes.
R-3329 / R-2559	n/a	Union	Monroe Bypass	From I-485 to U.S. 74. New 4 Lane divided toll facility (project complete).
R-5713	n/a - bypass takes over	Cleveland	U.S. 74	From U.S. 74 Bus to N.C. 226. Placement of directional crossovers and access management.
R-2707D	202/203	Cleveland	Shelby Bypass	From East of N.C. 150 to existing U.S. 74 west of SR 2238 (Long Branch Rd). Construct freeway on new location.
R-2707E	202/203	Cleveland	Shelby Bypass	From existing U.S. 74 west of SR 2238 (Long Branch Rd) to west of SR 1001 (Stony Point Rd). Construct freeway on new location.
R-2707C, F, G	202/203	Cleveland	Shelby Bypass	Sections C, F, G. Construct freeway on new location.
R-5878B	210	Anson	Wadesboro Bypass	U.S. 52 north of Wadesboro to U.S. 74 east of Wadesboro. Construct freeway on new location.
R-3421	n/a	Richmond	Rockingham Bypass	U.S. 74 to U.S. 220. Construct freeway on new location.

For the 2040 Recommended scenario, projects from area MTPs and CTPs were included in the project analysis. **Table 4** shows projects included for the 2040 Recommended scenario. Note: Some projects are consolidated/summarized where a group of individual grade separations/interchanges serve to convert a boulevard/expressway to interstate freeway standards.

Table 4. 2040 Recommended Scenario Projects

Plan	Segment	Counties	Roadway	Location/Description
MTP	210	Anson	Wadesboro Bypass	U.S. 74 west of Wadesboro to U.S. 52 N of Wadesboro. Construct freeway on new location.
MTP	202	Cleveland	U.S. 74	From Shelby Bypass to Mooresboro. Upgrade to controlled access from Shelby Bypass to Mooresboro with grade separation at SR 1168 (Lattimore Rd).
MTP	201	Cleveland	U.S. 74	From I-26 to U.S. 74 at Mooresboro. Upgrade freeway to interstate standards.
MTP	205	Gaston	I-85	From U.S. 321 to U.S. 74. Widen to 8 lanes.
MTP	205	Gaston	I-85	From Davison Ave/Tulip Dr to Fairview Dr. New interchange at I-85/Davidson Ave. New 2 lane alignment connecting Tulip Dr to Fairview Dr.
MTP	209	Union	U.S. 74	From Hanover Dr to Rocky River Rd. Widen from 4 lanes to 6 lanes with median, bike lanes, and sidewalks.
MTP	n/a	Mecklenburg	I-485	From I-85 to U.S. 74. Widen from 6 to 8 lanes including express lanes.
MTP	205	Mecklenburg	I-85	From Gaston County Line to Sam Wilson Rd. Widen roadway to additional westbound lane.
MTP	207	Mecklenburg	I-277 (Belk Fwy)	From Mint St to Independence Blvd (U.S. 74).
MTP	208	Mecklenburg	U.S. 74 (Independenc e Blvd)	From I-277 to Albemarle Rd (N.C. 24/N.C. 27). Add additional express lane in median.
MTP	209	Mecklenburg	U.S. 74 (Wilkinson Blvd)	From I-485 to Little Rock Rd. Widen from 4 lanes to 6 lanes with median, bike lanes, and sidewalks.
MTP	217	New Hanover	U.S. 74	From Wilmington Metropolitan Planning Organization (WMPO) Boundary to U.S. 17/74/76. Upgrade Interchange.
MTP	217	New Hanover	U.S. 74	Old Fayetteville Rd. Convert Grade Separation to interchange.
СТР	201	Rutherford	U.S. 74	From Polk County Line to Cleveland County Line. Upgrade to Interstate standards throughout County and obtain Interstate classification.
СТР	204	Cleveland	U.S. 74 (E Dixon Blvd)	From Proposed U.S. 74 Bypass to U.S. 74 Bus (Shelby Rd). Upgrade to Interstate standards.
СТР	202	Cleveland	U.S. 74	From Ellenboro Rd to U.S. 74 (W Dixon Blvd). Upgrade to Interstate standards.
СТР	n/a	Gaston	I-85	Wolfe Ln Ext, new freeway bypass without Shannon Bradley Rd, Fairview Dr, Belmont-Mt Holly Loop. Proposed Interchange.
СТР	n/a	Gaston	Northwest Bypass	New freeway bypass from I-85 near Bessemer City to U.S. 321 north of Dallas.
СТР	n/a	Gaston	Gaston Parkway	New freeway bypass from I-85 near Bessemer City to N.C. 279 (S New Hope Rd).

Plan	Segment	Counties	Roadway	Location/Description
СТР	208	Mecklenburg	U.S. 74	From I-277 to I-485. Widen, add managed lanes, convert existing intersections to interchanges.
CTP	209	Union	U.S. 74	I-485 to Roosevelt Blvd. Improvements and interchange conversions.
CTP	209	Union	U.S. 74	Proposed Marshville Bypass. New bypass.
CTP	210	Anson	U.S. 74	From Union County Line to Richmond County Line. Upgrade to interstate standards.
CTP	210	Anson	U.S. 74	Clinton Ave (Peachland), proposed N.C. 218 connector (Polkton), N.C. 145. Interchanges Recommended.
СТР	210	Anson	U.S. 74	From Old Prison Camp Rd (SR 1249) to west of Lilesville town limits. Upgrade to boulevard standards - convert from 5 lanes to 4-lane median divided.
CTP	210	Anson	U.S. 74	Proposed U.S. 52 Bypass. Interchange recommended.
CTP	211	Richmond	U.S. 74/Future I-74	From interchange of I-74/ U.S. 74 Bus to Scotland County Line. Upgrade to interstate standards.
CTP	211	Richmond	I-74	Proposed U.S. 220 Bypass, proposed U.S. 1 Bypass. Interchange recommended.
CTP	212	Scotland	U.S. 74/Future I-74	From Richmond County Line to Robeson County Line. Upgrade to interstate standards.
СТР	213	Robeson	U.S. 74	From N.C. 41 to east of Lumberton. Upgrade to interstate standards.
СТР	214/215	Robeson	U.S. 74	From Lumberton/County Planning Area Boundary (PAB) (east of Lumberton) to Columbus County Line (interchange locations TBD). Upgrade to 4-lane divided freeway.
CTP	216	Columbus	U.S. 74/76	From west of N.C. 11 to Brunswick County Line. New freeway south of existing alignment.
CTP	216	Columbus	U.S. 74/76	Robeson County to Brunswick County. Upgrade to interstate standards.
CTP	217	Brunswick	U.S. 74/76	From Columbus County Line to Wilmington MPO planning boundary. Upgrade to expressway standards.

2.2.2. Existing and Future Cross-Sections

With the buildout of committed and recommended projects, the characteristics of each segment along the corridor change over time, typically resulting in higher throughput capabilities and increased travel speeds. **Table 5** summarizes the facility type, lanes and typical posted speed for 2018, 2040 E+C and 2040 Recommended conditions (shaded grey fields indicate a change from 2018).

Table 5. Volume-to-Capacity Ratios by Scenario

	2018 Conditions			2040 E+0	2040 E+C Conditions			2040 Recommended Conditions		
Segment	Facility Type	Typical Posted Speed	Lanes	Facility Type	Typical Posted Speed	Lanes	Facility Type	Typical Posted Speed	Lanes	
201	Expressway	65	4	Expressway	65	4	Freeway	70	4	
202	Expressway	55	4	Expressway	55	4	Freeway	65	4	
203	Boulevard	45	4	Freeway	70	4	Freeway	70	4	
204	Expressway	65	4	Expressway	65	4	Freeway	70	4	
205	Freeway	65	6	Freeway	65	6	Freeway	65	8	
206	Boulevard	45	6	Boulevard	45	6	Boulevard	45	6	
207	Freeway	55	6	Freeway	55	6	Freeway	55	8	
208	Boulevard	45	6	Expressway	55	8	Expressway	65	10	
209	Boulevard	45	4	Boulevard	45	4	Boulevard	45	4	
210	Boulevard	55	4	Boulevard	55	4	Freeway	65	4	
211	Expressway	65	4	Expressway	65	4	Freeway	65	4	
212	Expressway	55	4	Expressway	55	4	Freeway	65	4	
213	Expressway	65	4	Expressway	65	4	Freeway	65	4	
214	Expressway	55	4	Expressway	55	4	Freeway	65	4	
215	Expressway	65	4	Expressway	65	4	Freeway	65	4	
216	Boulevard	55	4	Boulevard	55	4	Freeway	65	4	
217	Expressway	55	4	Expressway	55	4	Expressway	55	4	
218	Boulevard	55	6	Boulevard	55	6	Boulevard	55	6	

2.2.3. Travel Demand Model Analysis

Travel Demand Model Analysis was completed using the NCSTM, the Metrolina Regional Model (MRM), the Wilmington Model, and several small area models including Rutherford, Rockingham, Lumberton, Laurinburg, and Pembroke. Data from each of these models was used to calculate growth rates. **Table 6** presents an example of NCSTM model output from the 2015 and 2040 E+C network.

Table 6. 2015/2040 NCSTM E+C Comparison

		2015 NCS	STM Data		2040 E+C NCSTM Data				
Segment	Average AADT*	Daily VMT**	Daily VHT***	Ave. Speed	Average AADT	Daily VMT	Daily VHT	Ave. Speed	
201	21,000	654,700	10,700	61	31,000	979,000	18,400	53	
202	36,000	260,100	5,200	50	54,000	124,000	4,000	31	
203	40,000	269,000	5,600	48	32,000	468,300	6,900	68	
204	44,000	451,000	9,300	49	54,000	550,200	15,400	36	
205	106,000	2,235,100	52,900	42	133,000	2,790,000	89,400	31	
206	34,000	218,100	5,900	37	44,000	286,100	9,200	31	
207	59,000	119,800	2,400	51	76,000	154,900	4,500	34	
208	71,000	916,300	30,900	30	110,000	1,710,200	52,400	33	
209	22,000	485,100	11,200	43	32,000	720,000	18,500	39	
210	23,000	658,600	13,100	50	31,000	893,200	19,200	47	
211	14,000	218,300	3,300	66	21,000	337,300	5,200	65	
212	14,000	140,600	2,600	53	20,000	199,000	3,700	53	
213	12,000	452,800	7,000	65	15,000	604,200	9,300	65	
214	10,000	93,200	1,600	58	15,000	139,300	2,400	58	
215	11,000	177,500	2,800	63	15,000	237,000	3,800	63	
216	13,000	464,100	8,400	55	16,000	567,600	10,300	55	
217	32,000	324,600	5,900	55	46,000	463,100	9,000	51	
218	23,000	64,700	1,300	50	28,000	79,300	1,600	50	
Total	28,000	8,203,600	180,100	46	38,000	11,302,700	283,200	40	

^{*}AADT = Average Annual Daily Traffic

^{**}VMT = Vehicle-Miles Traveled

^{***}VHT = Vehicle-Hours Traveled

For the regional/MPO/local models, an E+C scenario was not evaluated; rather, the adopted MTPs were utilized for future year analysis. Information from these models was used to support development of growth rates to apply to each segment. **Table 7** shows a comparison of regional/MPO/local model data. When comparing growth data from the NCSTM and regional/MPO/local models, it should be noted that corridor segments may be represented in multiple local travel demand model models or only partially represented.

Table 7. Base Year (BY) and Future Year (FY) Conditions, MPO Model Output

	Travel			BY Data				FY Data			
ment	Demand Model(s)	BY	BY FY	Ave. AADT	Daily VMT	Daily VHT	Ave. Speed	Ave. AADT	Daily VMT	Daily VHT	Ave. Speed
201	Rutherford	2013	2040	14,700	253,600	3,800	67	19,300	331,800	5,000	66
202	Metrolina Regional Model (MRM)	2015	2045	23,000	175,700	3,300	53	30,400	220,900	4,100	54
203	MRM	2015	2045	31,600	207,300	4,700	44	38,700	253,400	5,700	45
204	MRM	2015	2045	26,100	271,900	4,600	59	43,800	414,400	6,700	62
205	MRM	2015	2045	104,100	2,044,800	39,600	52	148,200	2,911,400	58,900	49
206	MRM	2015	2045	27,800	169,900	4,600	37	34,600	211,100	6,800	31
207	MRM	2015	2045	71,800	166,900	3,200	52	81,600	201,800	4,200	48
208	MRM	2015	2045	63,300	1,094,700	30,200	36	120,800	1,489,200	42,200	35
209	MRM	2015	2045	29,400	655,900	19,000	35	37,500	842,800	25,100	34
210	-	-	-	-	-	-	-	-	-	-	-
211	Rocking- ham	2010	2040	11,500	177,300	2,400	74	13,100	201,700	2,700	74
212	Laurinburg	2010	2040	18,700	113,200	2,200	51	22,200	134,500	2,000	69
213	Laurinburg	2010	2040	16,200	163,900	2,400	67	21,800	220,100	3,300	67
213	Lumberton	2014	2040	9,900	78,700	1,100	70	14,200	112,600	1,600	70
213	Pembroke*	2010	2040	5,100	40,500	-	-	5,700	45,600	-	-
214	-	-	-	-	-	-	-	-	-	-	-
215	-	-	-	-	-	-	-	-	-	-	-
216	Wilmington*	2010	2040	16,100	146,000	-	-	30,400	275,100	-	-
217	Wilmington	2010	2040	37,500	334,500	-	-	46,400	413,700	-	-
218	Wilmington	2010	2040	34,900	99,000	1	-	56,900	161,400	1	-

^{*}Daily VHT/Speed data not readily available from Pembroke and Wilmington Models

2.2.4. Projected Growth Rates

Projected growth rates were developed based on information from the NCSTM, MPO models, and relevant traffic forecasts by corridor segment. These growth rates were applied to 2018 segment AADT to determine future year AADT for each scenario for mobility analysis. **Table 8** shows the projected growth rate for each corridor segment.

Table 8. Projected Growth Rates by Segment

	NCS	TM	MPO	STC	Growth Rate
Segment	Annual Growth Rate, 2015- 2040 E+C	Annual Growth Rate, 2015- 2040 Rec.	Annual Growth Rate	E+C, Selected	Recommended, Selected
201	1.6%	2.6%	1.0%	1.3%	2.0%
202	1.6%	2.3%	0.9%	1.3%	2.0%
203	-0.9%	-0.3%	0.7%	0.6%	0.8%
204	0.8%	1.6%	1.7%	1.2%	1.6%
205	0.9%	1.1%	1.2%	0.9%	1.1%
206	1.0%	0.9%	0.7%	0.8%	1.0%
207	1.0%	1.7%	0.4%	0.8%	1.5%
208	1.8%	3.0%	2.2%	2.2%	2.5%
209	1.5%	2.1%	0.8%	1.2%	1.5%
210	1.2%	3.4%	-	1.5%	2.5%
211	1.6%	3.9%	0.4%	1.5%	2.5%
212	1.4%	3.0%	0.6%	1.5%	2.5%
213	0.9%	2.5%	1.0%	1.0%	2.5%
214	1.6%	3.7%	-	1.0%	2.5%
215	1.2%	2.6%	-	1.0%	2.5%
216	0.8%	1.3%	2.1%	1.2%	1.5%
217	1.5%	1.7%	0.7%	1.5%	1.7%
218	0.8%	0.8%	1.6%	1.0%	1.0%

2.3. Mobility Measures

While there are many mobility measures that can be considered for each corridor based on quantitative and qualitative data, this mobility analysis is based on the relationship of travel speed, congestion, and travel time. For each scenario, a projected volume was compared against available capacity to estimate the travel time. VMT, VHT, and average speed are also presented for each scenario.

2.3.1. Volume-to-Capacity Ratio

Volume-to-Capacity (V/C) Ratio is a representation of a daily planning-level capacity versus an average daily traffic volume. It is not a measure of peak traffic or congestion, but rather an overall measure of the how well the roadway will function over the course of a day. Segments with a V/C exceeding 1.0 are considered LOS E in this analysis. **Table 9** presents V/C ratios by scenario. Shaded E+C and Recommended fields reflect increased capacities due to E+C/MTP/CTP projects.

Table 9. Volume-to-Capacity Ratios by Scenario

	201	8 Condition	ıs	2040 I	E+C Condit	ions	2040 Recommended Conditions		
Segment	Ave. Volume	Typical Capacity	Ave. V/C	Ave. Volume	Typical Capacity	Ave. V/C	Ave. Volume	Typical Capacity	Ave. V/C
201	18,220	54,800	0.33	24,210	54,800	0.44	28,170	59,300	0.48
202	26,270	55,800	0.47	34,900	55,800	0.63	40,610	58,500	0.69
203	36,000	36,600	0.98	41,060	58,500	0.70	42,900	58,500	0.73
204	37,870	57,100	0.66	49,230	55,800	0.88	53,700	58,500	0.92
205	105,500	106,320	0.99	128,490	106,320	1.21	134,210	120,000	1.12
206	30,680	42,800	0.72	36,560	42,800	0.85	38,190	42,800	0.89
207	98,220	92,900	1.06	117,040	92,900	1.26	136,290	125,800	1.08
208	73,680	52,800	1.40	118,920	95,000	1.25	126,850	158,100	0.80
209	39,860	36,600	1.09	51,820	36,600	1.42	55,310	36,600	1.51
210	18,800	45,200	0.42	26,090	45,200	0.58	32,370	59,300	0.55
211	14,200	53,300	0.27	19,700	53,300	0.37	24,450	57,200	0.43
212	22,910	54,800	0.42	31,790	54,800	0.58	39,440	59,300	0.67
213	17,220	56,100	0.31	21,430	56,100	0.38	29,650	59,300	0.50
214	16,860	56,100	0.30	20,990	56,100	0.37	29,030	64,700	0.45
215	16,690	56,100	0.30	20,770	56,100	0.37	28,730	64,700	0.44
216	16,450	49,000	0.34	21,390	49,000	0.44	22,830	64,700	0.35
217	42,500	57,100	0.74	58,970	57,100	1.03	61,580	57,100	1.08
218	38,950	64,900	0.60	48,480	64,900	0.75	48,480	64,900	0.75

2.3.2. Average Travel Time and Speed

Average travel time and speed are measures of the relationship between the V/C ratio of a segment and its typical travel speed. Volume-delay curves by facility type were used to estimate travel time and speed. These volume-delay curves, based on adjusted NCSTM volume-delay function (VDF) curves, represent the typical "congested" speed on a daily planning level. These travel times are not representative of any individual trip, since over the length of the entire corridor an individual traveler could pass through a segment at an off-peak or peak time. **Table 10** shows average travel time and speeds by scenario.

Table 10. Average Travel Speed and Travel Time by Scenario

	201	8 Condition	ns	2040 E+C Conditions			2040 Recommended Conditions		
Segment	Typical Posted Speed (mph)	Average Travel Speed (miles per hour)	Ave. Travel Time (min)	Typical Posted Speed (miles per hour)	Average Travel Speed (miles per hour)	Ave. Travel Time (min)	Typical Posted Speed (miles per hour)	Average Travel Speed (miles per hour)	Ave. Travel Time (min)
201	65	65	29.0	65	65	29.0	70	70	26.9
202	55	55	8.0	55	55	3.3	65	65	2.8
203	45	33	12.3	70	69	13.0	70	69	13.0
204	65	65	9.4	65	62	9.9	70	65	9.3
205	65	57	22.1	65	40	31.9	65	48	26.1
206	45	38	10.1	45	36	10.8	45	35	11.0
207	55	45	2.7	55	29	4.2	55	43	2.8
208	45	21	37.0	55	29	26.5	65	63	12.1
209	45	30	44.2	45	20	66.7	45	17	81.8
210	55	51	33.7	55	49	35.0	65	65	26.7
211	65	65	14.5	65	65	14.5	65	65	14.5
212	55	55	10.7	55	55	10.7	65	65	9.1
213	65	65	36.2	65	65	36.2	65	65	36.2
214	55	55	10.3	55	55	10.3	65	65	8.7
215	65	65	14.5	65	65	14.5	65	65	14.5
216	55	52	41.4	55	51	42.3	65	65	33.1
217	55	54	11.2	55	46	13.1	55	44	13.9
218	55	49	3.5	55	46	3.7	55	46	3.7
Total Travel Time (min)		351		-	376	-	-	346	

2.3.3. Vehicle-Miles and Vehicle-Hours Traveled

VMT and VHT represent overall demand on each segment for each scenario. **Table 11** shows a summary of VMT and VHT for each project scenario.

Table 11. VMT and VHT by Scenario

Segment	2018 Co	nditions	2040 E+C (Conditions	2040 Recommended Conditions		
	VMT	VHT	VMT	VHT	VMT	VHT	
201	572,600	8,800	760,900	11,700	885,300	12,700	
202	192,300	3,500	104,700	1,900	121,800	1,900	
203	243,600	7,400	615,900	8,900	643,500	9,300	
204	384,500	5,900	499,900	8,100	545,300	8,300	
205	2,218,100	38,800	2,701,500	68,400	2,821,800	58,400	
206	198,800	5,200	236,900	6,600	247,500	7,000	
207	199,900	4,400	238,300	8,200	277,400	6,400	
208	946,000	45,400	1,526,800	52,600	1,628,600	25,700	
209	894,900	29,400	1,163,400	57,600	1,297,000	75,400	
210	539,000	10,500	748,000	15,200	934,600	14,400	
211	222,900	3,400	309,200	4,800	383,800	5,900	
212	224,300	4,100	311,200	5,700	386,100	6,000	
213	674,800	10,400	839,800	12,900	1,161,900	17,900	
214	159,400	2,900	198,500	3,600	274,500	4,200	
215	263,000	4,000	327,200	5,000	452,700	7,000	
216	589,800	11,400	767,000	15,100	818,600	12,600	
217	430,300	7,900	597,000	12,900	623,500	14,300	
218	110,800	2,300	137,800	3,000	137,800	3,000	
Total	9,065,000	205,700	12,084,000	302,200	13,641,700	290,400	

2.3.4. Highway Mobility Summary

Table 12 presents a summary of highway mobility measures for 2018, 2040 E+C, and 2040 Recommended scenarios. The table shows that in 2040, the recommended corridor projects serve more travelers at a higher speed with less delay. In the Recommended Scenario, a typical trip through the corridor in 2040 would take approximately the same time as today – with 50% more demand. **Figure 2** presents an infographic summary of key highway mobility measures.

Table 12. Highway Mobility Summary

Magazira	2049	2040 E+C	2040
Measure	2018	2040 E+C	Recommended
Length (Miles)	288	292	293
Average Travel Time (Hours)	5.8	6.3	5.8
Vehicle-Miles Traveled	9,065,000	12,084,000	13,641,700
Vehicle-Hours Traveled	205,700	302,200	290,400
Average Annual Daily Volume	31,500	41,400	46,600
Average Speed (Miles per hour)	44	40	47

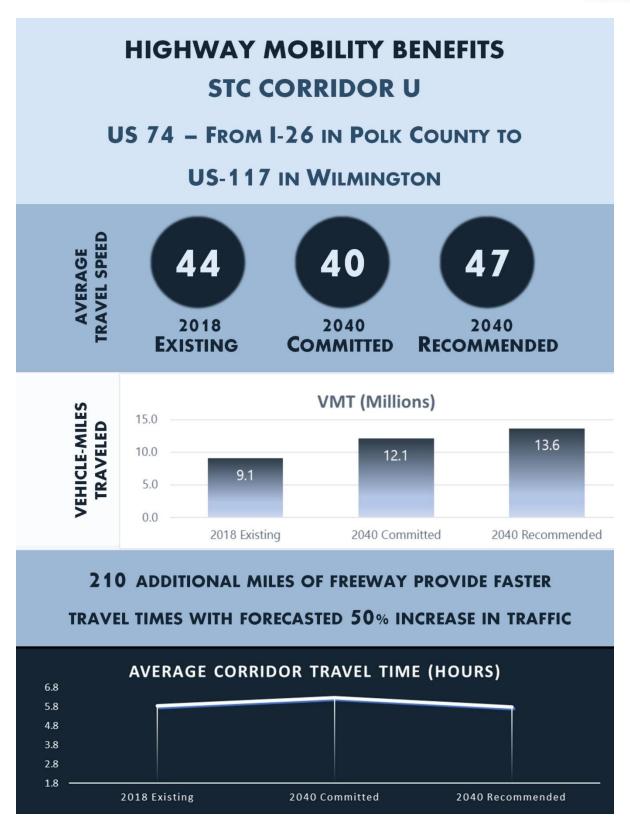


Figure 2. Highway Mobility Summary

3. Freight Mobility

U.S. 74 runs from U.S. 117 in Wilmington to I-26 in Polk County. It primarily consists of U.S. 74 and the CSX rail line as shown in **Figure 3**. Freight mobility into, out of, and within U.S. 74 was analyzed using freight flow data downloaded from the North Carolina Freight Flow tool. The freight flow data is presented as volume (tonnage) and value (dollars). It is based on the Federal Highway Administration's (FHWA) Freight Analysis Framework Version 4.1 (FAF4.1) with county-level disaggregation processed by Cambridge Systematics for 2012, 2015, and 2045, and it was forecasted to 2045 using FHWA's FAF4.1 origin-destination and commodity growth rates for rail flows¹.

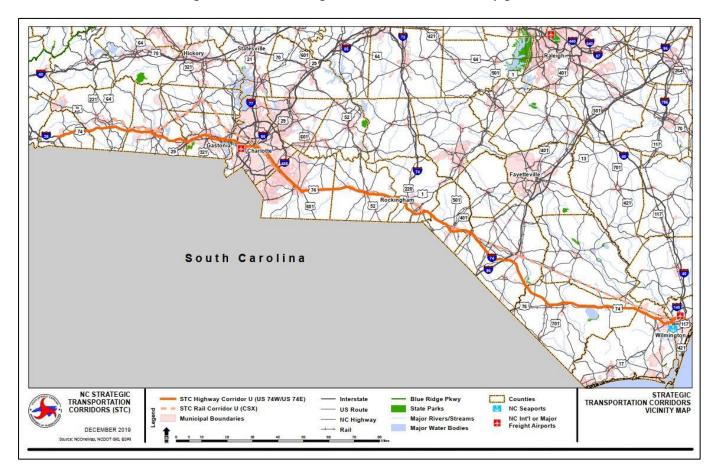


Figure 3. U.S. 74 and CSX line

Freight flow estimates for U.S. 74 include county totals for the 18 counties within the Wilmington, Lumber River, Metrolina, Gastonia, and Southern Foothills regions. These counties included: Anson, Bladen, Brunswick, Cabarrus, Cleveland, Columbus, Gaston, Lincoln, Mecklenburg, New Hanover, Pender, Polk, Richmond, Robeson, Rutherford, Scotland, Stanly, and Union. Results are presented for 12 different commodity groups and associated trade partners. Results by trade partners are presented regionally for the United States, at the county level for trade between the corridor and the rest of North Carolina, and at the FAF regional level for all other trade which includes states, large metropolitan areas, the remainder of states with large metropolitan area(s), and international regions for foreign freight flows.

¹ North Carolina Statewide Multimodal Freight Plan, Freight Flow Tool Reference Guide: https://connect.ncdot.gov/projects/planning/Statewide-Freight-Plan/Documents/Freight_Tool_User_Guide.pdf

3.1. Flow Type Totals

Freight flows to, from, and within the U.S. 74 counties (including domestic trade and the domestic leg of foreign trade) totaled an estimated 168.3 million tons worth \$254.5 billion in 2015, shown in **Figure 4**. Inbound flows represented roughly 42-43 percent of the corridor's volume, while outbound flows accounted for a third of the total volume but almost half (45 percent) of the value. A quarter of the flows were internal to the corridor, but only accounted for 12 percent of the value. Flows were forecasted to increase to 237.6 million tons worth \$487.6 billion in 2045 (an increase of roughly 41 and 92 percent, respectively).

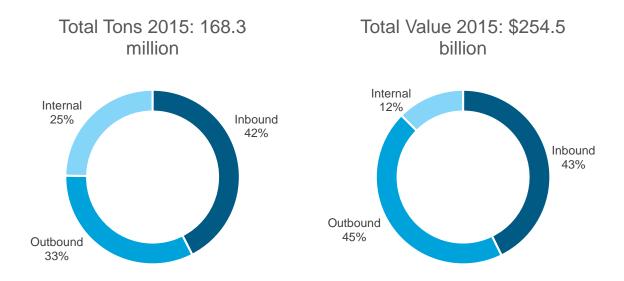


Figure 4. Freight Flow Totals, 2015

3.2. Modal Splits

Trucking dominates the market, moving over 82 percent of the corridor's freight and accounting for almost 72 percent of the total value, shown in **Figures 5** and **6**. Carload rail's roughly nine percent of volume translated to two percent of the value in 2015, while pipelines carried five percent of the total volume. Air cargo's minimal volume represented over three percent of the total value. Modal share forecasts for 2045 show little change in terms of volume, but trucking's share of the total value decreasing to 67 percent and air cargo's share increasing to eight percent.

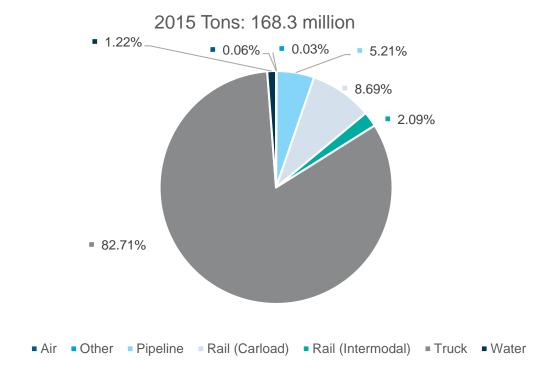


Figure 5. Modal Freight Flows by Volume, 2015

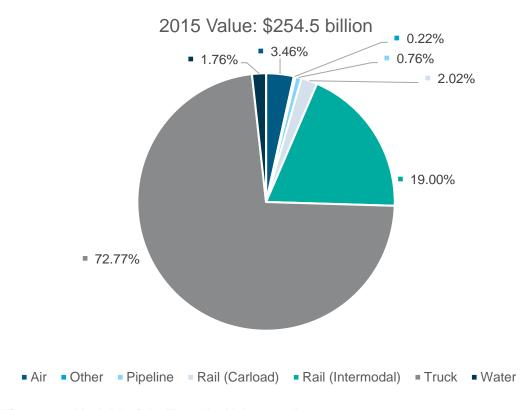


Figure 6. Modal Freight Flows by Value, 2015

3.3. Commodity Comparison, 2015 and 2045

Aggregates, with over 32 million tons, accounted for the largest volume of commodities moving to, from, and within the corridor, with roughly 42 percent moving internally within the region, shown in **Figure 7**. Energy Products, Raw and Finished Wood Products, and Nonmetallic Mineral and Base Metal Products all accounted for over 20 million tons in 2015. By 2045, flows of Machinery, Electric, and Precision Instruments are forecasted to increase by over 165 percent, growing from roughly 2.6 million tons to 7.06 million tons. Other commodity groups with high growth forecasts include Chemicals, Pharmaceuticals, Plastics, and Rubber (95 percent), Waste (86 percent), Mixed Freight (85 percent), and Food, Alcohol, and Tobacco (70 percent).

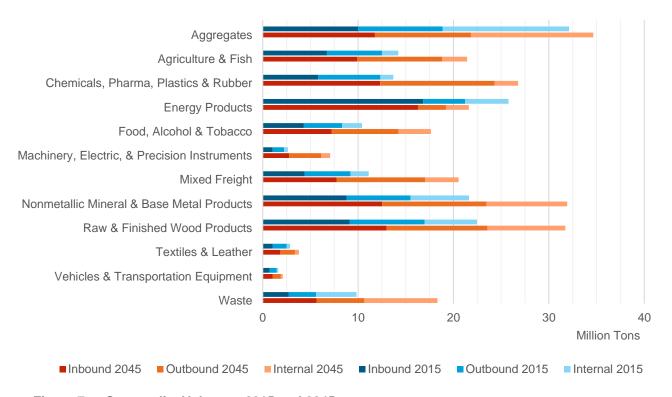


Figure 7. Commodity Volumes, 2015 and 2045

Mixed Freight's almost \$75 billion accounted for the largest share of the flows by value in 2015, and its forecasted growth of 90 percent would increase its value to just under \$140 billion by 2045. Machinery, Electric, and Precision Instruments are forecasted to more than double from \$35 to \$100 billion by 2045. Chemicals, Pharmaceuticals, Plastics, and Rubber are also expected to more than double in trade value from \$40 billion in 2015 to \$94 billion in 2045, as shown in **Figure 8**.

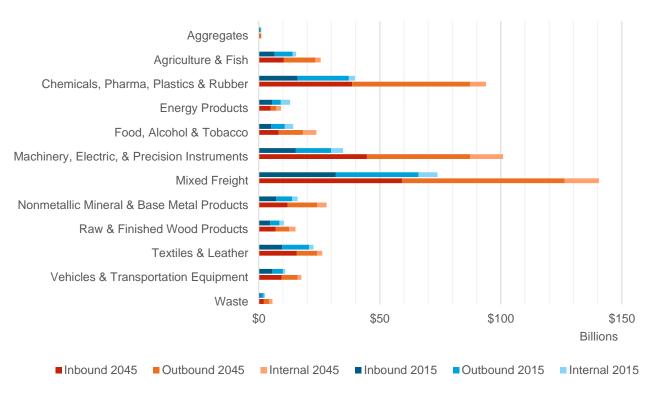


Figure 8. Commodity Values, 2015 and 2045

3.4. Top Trading Partners – by Volume and Value

The counties within U.S. 74 ship and receive the largest volume and value of goods within the Southeast region of the U.S. compared to all other U.S. regions. In 2015, this was estimated to be over 97 million tons valued at over \$122 billion with forecasts showing more than 136 million tons worth \$233 billion by 2045, shown in **Table 13**. The counties within the corridor traded more than 41 million tons of goods with one another valued at over \$31 billion in 2015. By 2045, trade is forecasted to consist of more than 53 million tons worth more than \$55 billion. The combined volume of trade with all the states west of the Mississippi River totaled only seven million tons in 2015, less than all other regions except for New England/New York, but was valued at \$40 billion, more than all other regions besides the Southeast. These volumes are forecasted to almost double by 2045 while the value of those goods more than double. Each trading region is visualized in **Figure 9**.

Table 13. Top Regional Trading Partners

Region	Toni	nage	Value			
Region	2015	2045	2015	2045		
Internal (North Carolina)	41,646,994	53,100,798	\$31,802,259,521	\$55,478,372,844		
Great Lakes	8,376,876	13,546,213	\$25,197,991,962	\$45,428,537,928		
Mideast	12,005,378	17,050,147	\$24,890,183,763	\$46,420,231,325		
New England/New York	1,794,373	3,695,702	\$8,595,276,002	\$19,929,308,150		
Southeast	97,229,377	136,587,169	\$122,025,396,617	\$233,599,110,808		
West of the Mississippi	7,275,107	13,574,304	\$41,983,447,391	\$86,779,208,312		
TOTALS	168,328,105	237,554,333	\$254,494,555,257	\$487,634,769,366		

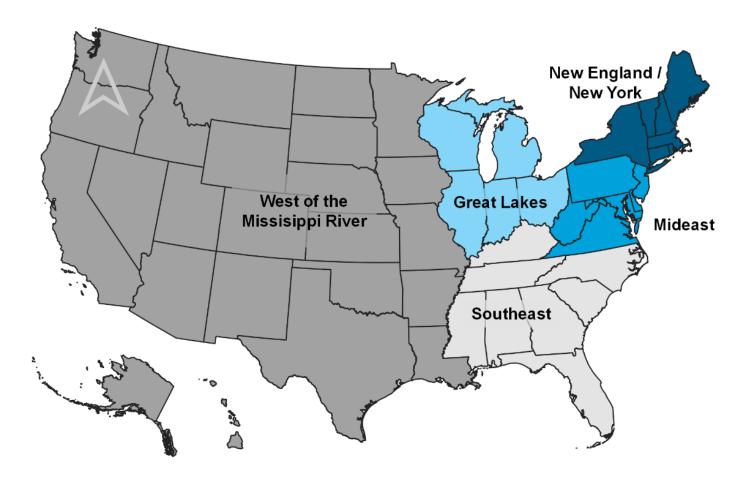


Figure 9. Trading Regions

Shown in **Figure 10**, the Other South Carolina FAF region was the top trade partner by volume in 2015 with over 12.9 million tons (5.3 million inbound and 7.6 million outbound) and is forecasted to be just under 18 million tons by 2045, a roughly 40 percent increase. Trade with the Greenville, SC FAF region ranked second with 8 million tons in

2015, and was followed by two counties within North Carolina, Rowan and Iredell, with 6.6 and 5.1 million tons respectively. Trade volumes are forecasted to more than double for both the Charleston, SC and Chicago, IL regions, from 3.8 to 8.4 million tons and from 2.5 to 5.2 million tons, respectively.

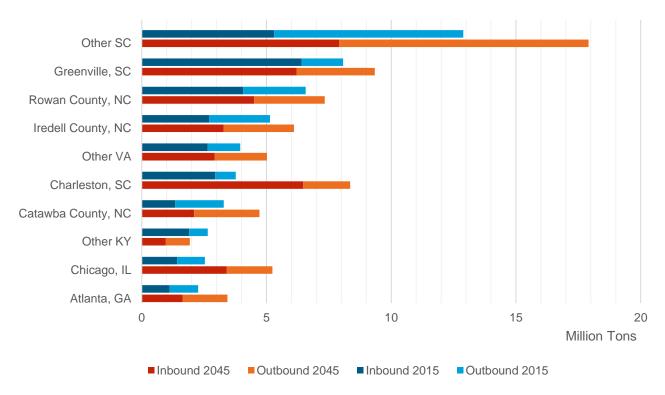


Figure 10. Top Trading Partners by Volume, 2015 and 2045²

The top three trade partners by value all accounted for over \$11 billion in 2015 and included \$11.7 billion with the Miami region and \$11.3 billion with both Chicago and Atlanta. By 2045, trade is forecasted to top \$25 billion with Miami, \$21 billion with Chicago, \$23.6 billion with Atlanta, and \$22.7 with Los Angeles after more than doubling the value of trade in 2015 (\$9.98 billion). Trade between U.S. 74 and the Charleston region is expected to triple from \$6.4 to \$19.4 billion, while trade with Savannah is forecasted to fall just short of tripling with \$5.3 billion in 2015 and \$15.4 billion in 2045, shown in **Figure 11**.

² "Other" FAF Regions refer to the remainder of a state trading region which does not include separately analyzed metropolitan areas. "Other SC" refers to the remainder of SC not including the Greenville and Charleston metros, "Other VA" refers to the remainder of VA not including the Washington, DC, Virginia Beach, and Richmond metros, and "Other KY" refers to the remainder of KY not including the Cincinnati and Louisville metros.

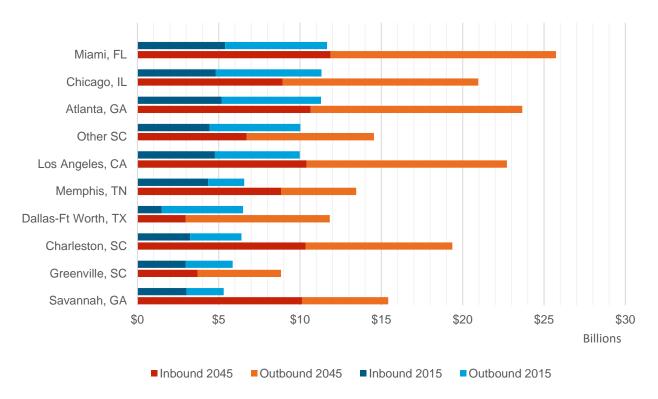


Figure 11. Top Trading Partners by Value, 2015 and 2045

3.5. Foreign Trade

Using 2015 volumes, foreign trade's 3.8 million tons only represented 2.3 percent of the corridor's total flows and is forecasted to more than double to five percent by 2045 when volumes will total 11.8 million tons. The \$23.2 billion worth of foreign trade in 2015 is forecasted to grow to \$92.5 billion by 2045. Foreign trade flows account for a higher percentage when comparing by value: 9.1 percent in 2015 and an estimated 19 percent in 2045.

Shown in **Figure 12**, tonnage of foreign trade is dominated by water with 66 percent of freight being moved on the water and trucking ranking second at 23 percent. Shown in **Figure 13**, modal shares of foreign trade by value are more evenly split with water accounting for 42 percent of the total, air 30 percent, and trucking 21 percent.

While little change in modal share by volume is forecasted between 2015 and 2045, notable changes in share by value are expected with water decreasing from 42 to 39 percent (\$35.5 billion in 2045), trucking decreasing from 21 to 19 percent (\$17.2 billion in 2045), and air increasing from 30 to 36 percent (\$33.7 billion).

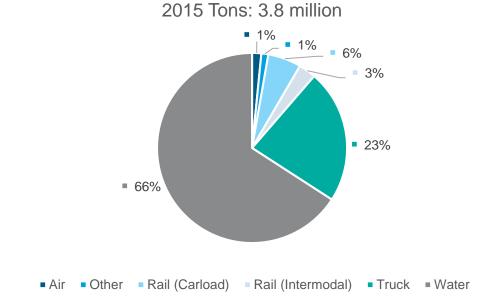
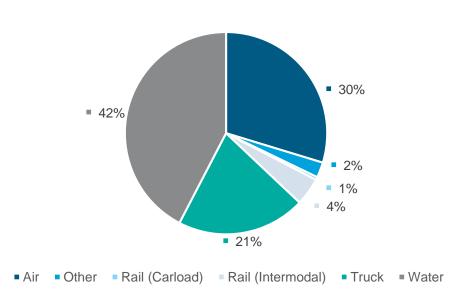



Figure 12. Foreign Trade Freight Flows by Mode and Volume, 2015

2015 Value: \$23.2 billion

Figure 13. Foreign Trade Freight Flows by Mode and Value, 2015

Chemicals, Pharmaceuticals, Plastics and Rubber was the top foreign traded commodity group by volume in 2015 with almost 690,915 tons, which represented 18 percent of the total, shown in **Figure 14**. By 2045 it is forecasted to increase to over 2.5 million tons, which would be over 21 percent of the total. Also by 2045, Machinery, Electric, and Precision Instruments; Textiles and Leather; Raw and Finished Wood Products; Nonmetallic Mineral and Base Metal Products; Mixed Freight; and Agriculture and Fish are all forecasted to top one million tons.

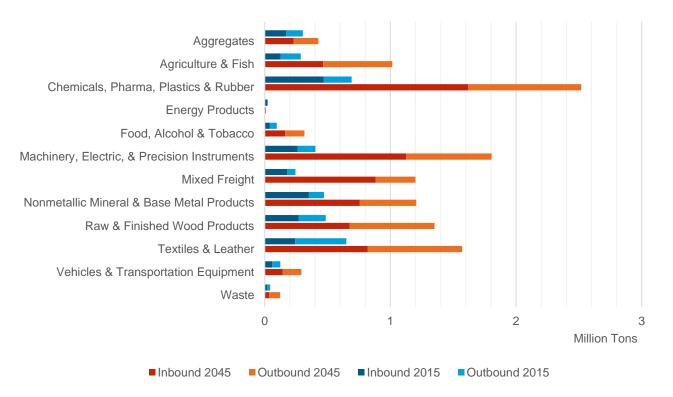


Figure 14. Foreign Trade Commodity Volumes, 2015 and 2045

By value, Machinery et al. accounted for over one-third of the total value with \$8.3 billion in 2015. By 2045, the same commodity group is forecasted to account for 41 percent of the total value with over \$38 billion. Chemicals et al. were valued at over \$5 billion in foreign trade in 2015 with forecasts topping \$22 billion in 2045 (22 and 24 percent, respectively). The corridor's foreign trade in 2015 was relatively balanced with 2.2 million tons of imported commodities versus 1.6 million tons of exported freight, with little change forecasted in 2045. On a value basis, imports accounted for 61 percent of the 2015 total (\$14.2 billion), with forecasts showing a slight dip to 59 percent of the total in 2045, shown in **Figure 15**.

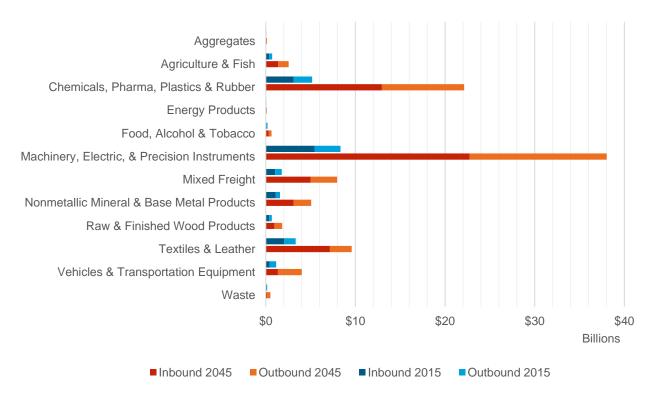


Figure 15. Foreign Trade Commodity Values, 2015 and 2045

Canada was the corridor's top foreign trade partner by volume in 2015 with roughly 925 thousand tons, a quarter of the total, shown in **Figure 16**. While Eastern Asia was ranked second in 2015 with 740 thousand tons, it is forecasted to be the top trade partner by volume in 2045 with over 2.57 to Canada's 2.496 million tons. The Rest of the Americas ranked third by volume with almost 676 thousand tons in 2015 and 1.94 million tons in 2045.

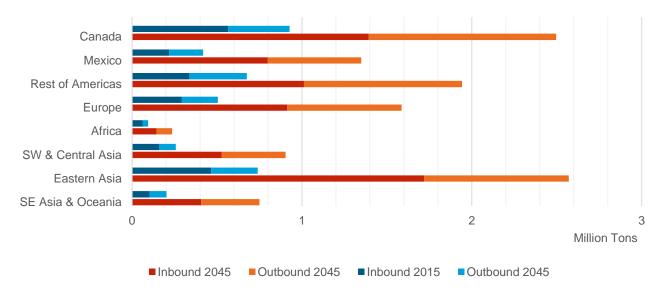


Figure 16. Foreign Trade Partners by Volume, 2015 and 2045

In 2015, Eastern Asia was the top ranked trade partner by value, followed by Europe, worth over \$5.5 and \$5.1 billion, respectively. By 2045, the same trade partners' value of goods is forecasted to grow to just under \$25 billion for Eastern Asia and \$17.7 billion for Europe. While Canada ranked first in terms of the volume of goods in 2015, it only ranked third in value, worth a total \$3.145 billion. Trade with Canada is forecasted to be worth \$11.1 billion in 2045, placing it fifth behind the Rest of Americas and Mexico, shown in **Figure 17**.

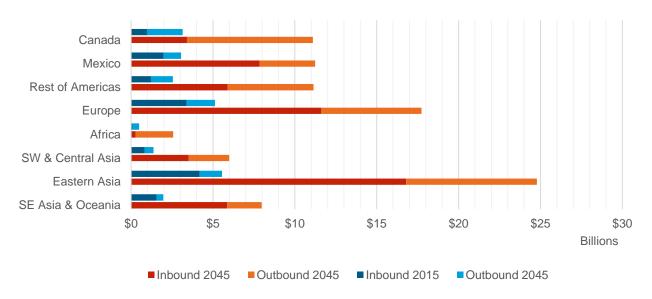
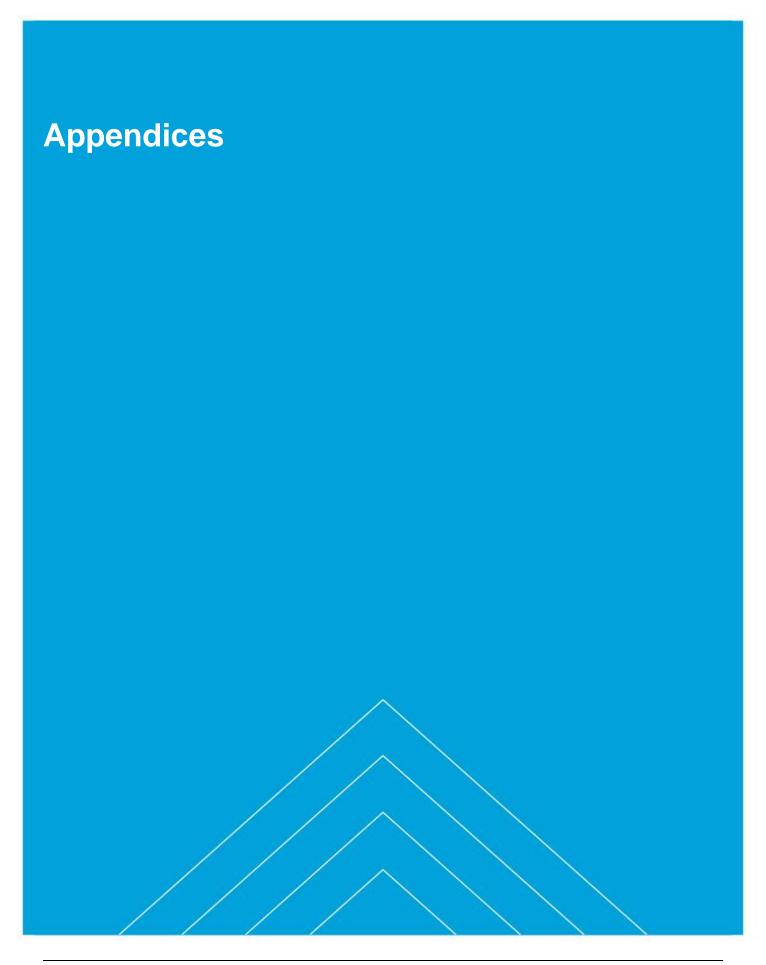



Figure 17. Foreign Trade Partners by Value, 2015 and 2045

Appendix A. NCDOT Level of Service D Standards for Systems Level Planning

Level of Service D Standards for Systems Level Planning

Level of Service A

Driver Comfort: High Maximum Density:

12 passenger cars per mile per lane

Level of Service B

Driver Comfort: High Maximum Density:

20 passenger cars per mile per lane

Level of Service C

Driver Comfort: Some Tension

Maximum Density:

30 passenger cars per mile per lane

Level of Service D

Driver Comfort: Poor Maximum Density:

42 passenger cars per mile per lane

Level of Service E

Driver Comfort: Extremely Poor Maximum Density:

67 passenger cars per mile per lane

Level of Service F

Driver Comfort:The lowest

Maximum Density:

More than 67 passenger cars per mile per lane

General Disclaimer

The Level of Service D Standards for Systems Level Planning was derived from the 2005 North Carolina Level of Service (NCLOS) Version 2.1 Program developed by the Institute for Transportation Research and Education (ITRE) at North Carolina State University. The NCLOS Program is based on the 2000 Highway Capacity Manual, published by the Transportation Research Board (TRB).

These standards are intended for <u>systems level planning only</u>. Many assumptions are made and documented in the development of these standards.

CTP FACILITY TYPES

FREEWAYS represent a multi-lane divided facility with complete access control (interchanges only and no traffic signals).

EXPRESSWAYS represent a multi-lane divided facility with a high level of access control (interchanges, limited at-grade intersections, right-in/right out access, and no traffic signals).

BOULEVARDS represent a typically divided facility with moderate access control (at-grade intersections, right-in/right out access, and traffic signals at major intersections).

OTHER MAJOR THOROUGHFARES represent undivided facilities with four or more lanes (US and NC routes may have less than 4 lanes). These facilities typically have low access control (at-grade intersections, access to development, and traffic signals at major and some minor intersections).

MINOR THOROUGHFARES represent a 2-to-3 lane undivided facility that is not signed as a US or NC route. These facilities typically have low access control (at-grade intersections, access to development, and traffic signals at major and minor intersections).

NCLOS (HCM) FACILITY TYPES

FREEWAYS (Freeways) represent a multi-lane divided facility with complete access control (interchanges only and no traffic signals).

EXPRESSWAYS (Multi-lane Highways) represent a multi-lane divided facility with a high level of access control (interchanges, limited at-grade intersections, right-in/right out access, and no traffic signals).

BOULEVARDS (Arterials, 25-55 MPH) represent a typically divided facility with moderate access control (at-grade intersections, right-in/right out access, and traffic signals at major intersections).

OTHER MAJOR THOROUGHFARES (Arterials, 25-55 MPH) represent undivided facilities with four or more lanes (US and NC routes may have less than 4 lanes). These facilities typically have low access control (at-grade intersections, access to development, and traffic signals at major and some minor intersections). These facilities are typically within an urban or suburban area (e.g. within a municipality or ETJ).

MINOR THOROUGHFARES (Arterials 25-55 MPH) represent a 2-to-3 lane undivided facility that is not signed as a US or NC route. These facilities typically have low access control (at-grade intersections, access to development, and traffic signals at major and minor intersections). These facilities are typically within an urban or suburban area (e.g. within a municipality or ETJ).

RURAL 2-LANE HIGHWAY (Two-Lane Highway, 55 MPH ONLY) represents a 2-lane undivided facility outside of a municipality or ETJ. These facilities have a 55 MPH posted speed limit, have low access control with numerous driveways and no traffic signals. These facilities are classified in a CTP as other major thoroughfares if they are a usecondary or local route.

AREA TYPE

RURAL represents an area outside a municipality or Extraterritorial Jurisdiction (ETJ).

SUBURBAN represents an area within a municipality or ETJ that is not within a Central Business District (CBD) or areas immediately surrounding a CBD.

URBAN represents an area that is within a CBD or areas immediately surrounding a CBD.

LEVEL OF SERVICE D VALUES

MINIMUM CAPACITY VALUES represents conditions/inputs that result in a worst-case Level of Service D for a given facility. This lower value represents worst-case conditions in available data for a given region (Higher K/D Factors, Lower Peak Hour Factor, poor road conditions, etc.).

STANDARD CAPACITY VALUES represents an average Level of Service D for a given facility. This default value is an average of available data for a given region.

MAXIMUM CAPACITY VALUES represents conditions/inputs that result in a best-case Level of Service D for a given facility. This higher value represents best-case conditions in available data for a given region (Lower K/D Factors, Higher Peak Hour Factor, etc.).

These assumptions may not pertain to all systems level planning work; therefore, separate analysis may need to be conducted on a case-by-case basis.

These standards are **not** intended for project specific or corridor analysis. Separate analysis would be required for these types of projects.

Volumes shown represent the point at which traffic transitions from LOS D to LOS E.

Level of Service D Standards for Freeways *

COASTAL	2 Lan	es Per Dire	ection	3 Lan	es Per Dire	ection	4 Lanes Per Direction			
COASTAL	Urban	Suburban	Rural	Urban	Suburban	Rural	Urban	Suburban	Rural	
0-5% Trucks	67400	66900	67900	102000	101300	101800	137300	136200	135700	
6-10% Trucks	65700	65400	66200	99600	98900	99400	134000	133000	132500	
11-15% Trucks	64200	63800	64700	97300	96600	97100	130900	129900	129400	
16-20% Trucks	62800	62400	63200	95100	94400	94900	127900	126900	126500	
21-25% Trucks	61400	61000	61800	9300	92300	92700	125100	124100	123700	
26-30% Trucks	60000	59700	60500	90900	90300	90700	122400	121400	121000	
31-35% Trucks	58800	58400	59200	89000	88400	88800	119800	118800	118400	

PIEDMONT	2 Lar	nes Per Dire	ection	3 Lan	es Per Dire	ection	4 Lanes Per Direction			
FIEDWONT	Urban	Suburban	Rural	Urban	Suburban	Rural		Urban	Suburban	Rural
0-5% Trucks	61700	61400	62200	93500	92900	93300		125800	124900	124400
6-10% Trucks	60300	59900	60700	91300	90700	91100		122800	121900	121500
11-15% Trucks	58900	58500	59300	89200	88600	89000		120000	119100	118600
16-20% Trucks	57500	57200	58000	87100	86500	87000		117300	116400	115900
21-25% Trucks	56300	55900	56700	85200	84600	85000		114700	113800	113400
26-30% Trucks	55000	54700	55400	83400	82800	83200		112200	111300	110900
31-35% Trucks	53900	53500	54300	81600	81000	81400		109800	108900	108500

MOUNTAIN	2 Lar	nes Per Dire	ection	3 Lan	es Per Dire	ection	4 Lanes Per Direction			
(Level Terrain)	Urban	Suburban	Rural	Urban	Suburban	Rural		Urban	Suburban	Rural
0-5% Trucks	56100	61400	62200	85000	92900	93300		114400	124900	124400
6-10% Trucks	54800	59900	60700	83000	90700	91100		111700	121900	121500
11-15% Trucks	53500	58500	59300	81100	88600	89000		109100	119100	118600
16-20% Trucks	52300	57200	58000	79200	86500	87000		106600	116400	115900
21-25% Trucks	51100	55900	56700	77500	84600	85000		104200	113800	113400
26-30% Trucks	50000	54700	55400	75800	82800	83200		102000	111300	110900
31-35% Trucks	49000	53500	54300	74200	81000	81400		99800	108900	108500

MOUNTAIN	2 Lar	es Per Dire	ection	3 Lan	es Per Dire	ection	4 Lanes Per Direction			
(Rolling Terrian)	Urban	Suburban	Rural	Urban	Suburban	Rural	Urba	n Suburban	Rural	
0-5% Trucks	53500	58500	59300	81100	88600	89000	1091	00 119100	118600	
6-10% Trucks	50000	54700	55400	75800	82800	83200	1020	00 111300	110900	
11-15% Trucks	47000	51400	52100	71100	77700	78100	9570	0 104500	104100	
16-20% Trucks	44300	48400	49000	67000	73200	73600	9020	98500	98100	
21-25% Trucks	41800	45700	46400	63400	69200	69600	8530	93100	92700	
26-30% Trucks	39700	43400	44000	60100	65700	66000	8090	00 88300	87900	
31-35% Trucks	37700	41200	41800	57100	62400	62700	7690	00 83900	83600	

Uses "Freeways" Facility Type in NCLOS

See Appendix A1 for HCM 2000 Freeway Equations

Use Appendix A2: Coastal Freeway Inputs for adjustments Use Appendix A3: Piedmont Freeway Inputs for adjustments

Use Appendix A4: Mountain (Level) Freeway Inputs for adjustments Use Appendix A5: Mountain (Rolling) Freeway Inputs for adjustments

NOTE: Truck percentage occurs within the peak hour, not a daily truck percentage

^{*} Assumes Regional K and D Factor Averages

Level of Service D Standards for Expressways *

COASTAL	2 Lar	nes Per Dire	ction	3 Lan	es Per Dire	ection	4 Lanes Per Direction			
COASTAL	Urban	Suburban	Rural	Urban	Suburban	Rural		Urban	Suburban	Rural
0-5% Trucks	47500	58500	58800	71200	87700	88300		95000	117000	117700
6-10% Trucks	46400	57100	57400	69500	85600	86200		92700	114200	114900
11-15% Trucks	45300	55800	56100	67900	83700	84200		90600	111500	112200
16-20% Trucks	44200	54500	54800	66400	81800	82200		88500	109000	109700
21-25% Trucks	43300	53300	53600	64900	79900	80400		86500	106600	107200
26-30% Trucks	42300	52100	52400	63500	78200	78700		84700	104300	104900
31-35% Trucks	41400	51000	51300	62100	76500	77000		82900	102100	102700

PIEDMONT	2 Lar	es Per Dire	ection	3 Lan	es Per Dire	ection	4 Lan	es Per Direction	
FIEDMONT	Urban	Suburban	Rural	Urban	Suburban	Rural	Urban	Suburban	Rural
0-5% Trucks	47500	58500	58800	71200	87700	88300	95000	117000	117700
6-10% Trucks	46400	57100	57400	69500	85600	86200	92700	114200	114900
11-15% Trucks	45300	55800	56100	67900	83700	84200	90600	111500	112200
16-20% Trucks	44200	54500	54800	66400	81800	82200	88500	109000	109700
21-25% Trucks	43300	53300	53600	64900	79900	80400	86500	106600	107200
26-30% Trucks	42300	52100	52400	63500	78200	78700	84700	104300	104900
31-35% Trucks	41400	51000	51300	62100	76500	77000	82900	102100	102700

MOUNTAIN	2 Lar	nes Per Dire	ection	3 Lanes Per Direction				4 Lar	es Per Dire	ection
(Level Terrain)	Urban	Suburban	Rural	Urban	Suburban	Rural	П	Urban	Suburban	Rural
0-5% Trucks	47500	53200	58800	71200	79800	88300	\Box	95000	106400	117700
6-10% Trucks	46400	51900	57400	69500	77900	86200	\Box	92700	103800	114900
11-15% Trucks	45300	50700	56100	67900	76100	84200	\Box	90600	101400	112200
16-20% Trucks	44200	49500	54800	66400	74300	82200	\Box	88500	99100	109700
21-25% Trucks	43300	48400	53600	64900	72700	80400	\Box	86500	96900	107200
26-30% Trucks	42300	47400	52400	63500	71100	78700	\Box	84700	94800	104900
31-35% Trucks	41400	46400	51300	62100	69600	77000		82900	92800	102700

MOUNTAIN	2 Lar	es Per Dire	ection	3 Lan	es Per Dire	ection	4 Lanes Per Direction			
(Rolling Terrian)	Urban	Suburban	Rural	Urban	Suburban	Rural		Urban	Suburban	Rural
0-5% Trucks	41200	50700	56100	61700	76100	84200		82300	101400	112200
6-10% Trucks	38500	47400	52400	57700	71100	78700		77000	94800	110400
11-15% Trucks	36100	44500	49200	54200	66700	73900		72200	89000	98500
16-20% Trucks	34000	41900	46400	51100	62900	69600		68100	83900	92800
21-25% Trucks	32200	39600	43900	48300	59500	65800		64400	79300	87700
26-30% Trucks	30500	37600	41600	45800	56400	62400		61000	75200	83200
31-35% Trucks	29000	35700	39600	43500	53600	59300		58000	71500	79100

Uses "Multi-lane Highways" Facility Type in NCLOS

See Appendix B1 for HCM 2000 Multi-lane Highway Equations Use Appendix B2: Coastal Expressway Inputs for adjustments

Use Appendix B3: Piedmont Expressway Inputs for adjustments

Use Appendix B4: Mountain (Level) Expressway Inputs for adjustments

Use Appendix B5: Mountain (Rolling) Expressway Inputs for adjustments

NOTE: Truck percentage occurs within the peak hour, not a daily truck percentage

^{*} Assumes Regional K and D Factor Averages

Level of Service D Standards for Boulevards *

COASTAL	1 La	ne Per Dire	ction	2 Lar	es Per Dire	ection	3 Lan	es Per Dire	ection
COASTAL	Urban	Suburban	Rural	Urban	Suburban	Rural	Urban	Suburban	Rural
55 MPH	21600	21900	24500	43300	43900	49000	64900	65800	73500
45 MPH	18900	19800	23600	38100	39700	47200	57200	59600	70800
35 MPH	14000	16900		28100	34300		42200	51700	
25 MPH	12500			25400			38400		

PIEDMONT	1 La	ne Per Dire	ction	2 Lar	es Per Dire	ection	3 Lar	nes Per Direction	
PIEDWONI	Urban	Suburban	Rural	Urban	Suburban	Rural	Urban	Suburban	Rural
55 MPH	19900	20200	22600	40000	40500	45200	59900	60700	67900
45 MPH	17500	18300	21800	35100	36600	43600	52800	55000	65400
35 MPH	14000	15600		28100	31600		42200	47700	
25 MPH	12500			25400			38400		

MOUNTAIN	1 La	ne Per Direc	ction	2 Lar	nes Per Dire	ection	3 Laı	nes Per Dire	ction
MOUNTAIN	Urban	Suburban	Rural	Urban	Suburban	Rural	Urban	Suburban	Rural
55 MPH	21600	21900	22300	43300	43900	44500	64900	65800	66800
45 MPH	18900	20700	21400	38100	41400	42900	57200	62100	64400
35 MPH	14000	18500		28100	37400		42200	56400	
25 MPH	12500			25400			38400		

Uses "Principal Arterials" Facility Type in NCLOS

See Appendix C1 for HCM Urban Arterial Equations

Use Appendix C2: Coastal Boulevard Inputs for adjustments Use Appendix C3: Piedmont Boulevard Inputs for adjustments Use Appendix C4: Mountain Boulevard Inputs for adjustments

NOTE: Inputs assume 12-foot lanes. To adjust lane-width downward, subtract 3.33% per foot of pavement and round to the nearest hundred

8

^{*} Assumes Regional K and D Factor Averages

Coastal Level of Service D Standards for Other Major Thoroughfares *

55 MPH	1 La	ne Per Direc	ction	1 Lane F	er Direction	WCLTL
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	15100	15800	16400	16600	17200	17800
11 foot lanes	14600	15300	15900	16100	16600	17200
10 foot lanes	14100	14700	15300	15500	16100	16600
9 foot lanes	13600	14200	14800	15000	15500	16000
45 MPH	1 La	ne Per Direc	ction	1 Lane F	Per Direction	WCLTL
43 WIFT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	13200	13800	14600	14500	14900	16000
11 foot lanes	12800	13300	14100	14000	14400	15500
10 foot lanes	12300	12900	13600	13500	13900	15000
9 foot lanes	11900	12420	13140	13050	13400	14400
35 MPH	1 La	ne Per Direc	ction	1 Lane F	Per Direction	WCLTL
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	11100	12600		12700	14000	
11 foot lanes	10700	12200		12300	13500	
10 foot lanes	10400	11800		11900	13100	
9 foot lanes	10000	11300		11400	12600	
25 MPH	1 La	ne Per Direc	ction	1 Lane F	Per Direction	WCLTL
Z3 WIFTI	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	11000			12700		
11 foot lanes	10600			12300		
10 foot lanes	10300			11900		
9 foot lanes	9900			11400		

Uses "Principal Arterials" Facility Type in NCLOS

See Appendix D1 for HCM 2000 Urban Arterial Equations
Use Appendix D2: Coastal Major Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Coastal Level of Service D Standards for Other Major Thoroughfares *

55 MPH	2 Lar	nes Per Dire	ction	2 Lanes l	Per Direction	n WCLTL
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	30400	31600	32800	33300	34500	35700
11 foot lanes	29400	30600	31700	32200	33400	34500
10 foot lanes	29400	29500	30600	31100	32200	33300
9 foot lanes	27400	28400	29500	30000	31100	32100
45 MPH	2 Lar	nes Per Dire	ction	2 Lanes	Per Direction	n WCLTL
43 WIFT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	26700	27600	29300	29000	29900	32000
11 foot lanes	25900	26700	28300	28000	28900	30900
10 foot lanes	25000	25800	27300	27100	27900	29900
9 foot lanes	24000	24800	26400	26100	26900	29000
35 MPH	2 Lar	nes Per Dire	ction	2 Lanes Per Direction WCLT		
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	22200	25500		24300	28100	
11 foot lanes	21500	24700		23500	27200	
10 foot lanes	20700	23800		22700	26200	
9 foot lanes	20000	23000		21900	25300	
25 MPH	2 Lar	nes Per Dire	ction	2 Lanes	Per Direction	n WCLTL
Z3 WIFTI	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	22100			24200		
11 foot lanes	21400			23400		
10 foot lanes	20500			22600		
9 foot lanes	19900			21800		

Uses "Principal Arterials" Facility Type in NCLOS

See Appendix D1 for HCM 2000 Urban Arterial Equations
Use Appendix D2: Coastal Major Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Piedmont Level of Service D Standards for Other Major Thoroughfares *

55 MPH	1 La	ne Per Direc	ction	1 Lane F	er Direction	WCLTL
33 IVIPH	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	12900	14600	15100	14200	15900	16500
11 foot lanes	12500	14100	14600	13700	15400	16000
10 foot lanes	12000	13600	14100	13300	14800	15400
9 foot lanes	11600	13100	13600	12800	14300	14900
45 MPH	1 La	ne Per Direc	ction	1 Lane Per Direction WCLTL		
45 WIFT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	12200	12700	14600	13300	13800	16000
11 foot lanes	11800	12300	14100	12900	13300	15500
10 foot lanes	11400	11900	13600	12400	12900	14900
9 foot lanes	11000	11400	13100	12000	12400	14400
35 MPH	1 La	ne Per Direc	ction	1 Lane Per Direction WCLTL		
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	11100	11600		12700	12900	
11 foot lanes	10700	11200		12300	12500	
10 foot lanes	10400	10800		11900	12000	
9 foot lanes	10000	10400		11400	11600	
25 MPH	1 La	ne Per Direc	ction	1 Lane F	er Direction	WCLTL
Z3 WIFTI	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	11000			12700		
11 foot lanes	10600			12300		
10 foot lanes	10300			11900		
9 foot lanes	9900			11400		

Uses "Principal Arterials" Facility Type in NCLOS

See Appendix D1 for HCM 2000 Urban Arterial Equations
Use Appendix D3: Piedmont Major Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Piedmont Level of Service D Standards for Other Major Thoroughfares *

55 MPH	2 Lar	nes Per Dire	ction	2 Lanes l	Per Direction	n WCLTL
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	25800	29100	30200	28400	31800	33000
11 foot lanes	24900	28100	29200	27500	30800	31900
10 foot lanes	24100	27200	28200	26500	29700	30800
9 foot lanes	23200	26200	27200	25600	28600	29700
45 MPH	2 Lar	nes Per Dire	ction	2 Lanes	Per Direction	n WCLTL
43 WIFT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	24600	25500	29300	26800	27600	32000
11 foot lanes	23800	24700	28300	25900	26700	31000
10 foot lanes	23000	23800	27300	25000	25800	29900
9 foot lanes	22100	23000	26400	24100	24800	28800
35 MPH	2 Lar	nes Per Dire	ction	2 Lanes Per Direction WCLT		
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	22200	23500		24300	26000	
11 foot lanes	21500	22700		23500	25100	
10 foot lanes	20700	21900		22700	24300	
9 foot lanes	20000	21200		21900	23400	
25 MPH	2 Lar	nes Per Dire	ction	2 Lanes	Per Direction	n WCLTL
Z3 WIFTI	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	22100			24200		
11 foot lanes	21400			23400		
10 foot lanes	20600			22600		
9 foot lanes	19900			21800		

Uses "Principal Arterials" Facility Type in NCLOS

See Appendix D1 for HCM 2000 Urban Arterial Equations
Use Appendix D3: Piedmont Major Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Mountain Level of Service D Standards for Other Major Thoroughfares *

55 MPH	1 La	ne Per Direc	ction	1 Lane F	er Direction	WCLTL
33 IVIPH	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	14000	14600	15100	15300	15900	16500
11 foot lanes	13500	14100	14600	14800	15400	16000
10 foot lanes	13100	13600	14100	14300	14800	15400
9 foot lanes	12600	13100	13600	13800	14300	14900
45 MPH	1 La	ne Per Direc	ction	1 Lane F	er Direction	WCLTL
43 WIFT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	12200	12700	14600	13300	13800	16000
11 foot lanes	11800	12300	14100	12900	13300	15500
10 foot lanes	11400	11900	13600	12400	12900	14900
9 foot lanes	11000	11400	13100	12000	12400	14400
35 MPH	1 Lane Per Direction			1 Lane Per Direction WCLTL		
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	11000	11600		12700	12900	
11 foot lanes	10600	11200		12300	12500	
10 foot lanes	10300	10800		11900	12000	
9 foot lanes	9900	10400		11400	11600	
25 MPH	1 La	ne Per Direc	ction	1 Lane Per Direction WCLTL		
Z3 WIFTI	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	11000			12700		
11 foot lanes	10600			12300		
10 foot lanes	10300			11900		
9 foot lanes	9900			11400		

Uses "Principal Arterials" Facility Type in NCLOS

See Appendix D1 for HCM 2000 Urban Arterial Equations
Use Appendix D4: Mountains Major Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Mountain Level of Service D Standards for Other Major Thoroughfares *

EE MDU	2 Laı	nes Per Dire	ction	2 Lanes	Per Direction	n WCLTL
55 MPH	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	28000	29100	30200	30800	31800	33000
11 foot lanes	27100	28100	29200	29800	30800	31900
10 foot lanes	26100	27200	28200	28700	29700	30800
9 foot lanes	25200	26200	27200	27700	28600	29700
45 MPH	2 Laı	nes Per Dire	ction	2 Lanes l	Per Direction	n WCLTL
45 IVIPH	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	24600	25500	29300	26800	27600	32000
11 foot lanes	23800	24700	28300	25900	26700	30900
10 foot lanes	23000	23800	27300	25000	25800	29900
9 foot lanes	22100	23000	26400	24100	24800	28800
35 MPH	2 Laı	nes Per Dire	ction	2 Lanes Per Direction WCL		
33 IVIPH	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	22200	23500		24300	26000	
11 foot lanes	21500	22700		23500	25400	
10 foot lanes	20700	21900		22700	24300	
9 foot lanes	20000	21200		21900	23400	
25 MPH	2 Laı	nes Per Dire	ction	2 Lanes	Per Direction	n WCLTL
Z3 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	22100			24200		
11 foot lanes	21400			23400		
10 foot lanes	20600			22600		
9 foot lanes	19900			21800		

Uses "Principal Arterials" Facility Type in NCLOS

See Appendix D1 for HCM 2000 Urban Arterial Equations
Use Appendix D4: Mountains Major Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Coastal Level of Service D Standards for Minor Thoroughfares *

55 MPH	1 Lane Per Direction			1 Lane Per Direction WCLTL			
	Urban	Suburban	Rural	Urban	Suburban	Rural	
12 foot lanes	15100	15800	16400	16600	17200	17800	
11 foot lanes	14600	15300	15900	16100	16600	17200	
10 foot lanes	14100	14700	15300	15500	16100	16600	
9 foot lanes	13600	14200	14800	14900	15500	16000	

45 MPH	1 Lane Per Direction			1 Lane Per Direction WCLTL			
	Urban	Suburban	Rural	Urban	Suburban	Rural	
12 foot lanes	12700	13300	14600	14200	14300	16000	
11 foot lanes	12300	12900	14100	13700	13800	15500	
10 foot lanes	11900	12400	13600	13300	13300	14900	
9 foot lanes	11400	12000	13100	12800	12900	14400	

35 MPH	1 Lane Per Direction				1 Lane Per Direction WCLTL			
33 IVIFIT	Urban	Suburban	Rural		Urban	Suburban	Rural	
12 foot lanes	10500	11000			11500	13700		
11 foot lanes	10200	10600			11100	13300		
10 foot lanes	9800	10300			10700	12800		
9 foot lanes	9500	9900			10400	12300		

25 MPH	1 Lane Per Direction				1 Lane Per Direction WCLTL			
	Urban	Suburban	Rural		Urban	Suburban	Rural	
12 foot lanes	10000				11300			
11 foot lanes	9700				10900			
10 foot lanes	9300				10500			
9 foot lanes	9000				10200			

Uses "Principal Arterials" and "Minor Arterials" Facility Types in NCLOS

See Appendix E1 for HCM 2000 Urban Arterial Equations
Use Appendix E2: Coastal Minor Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Piedmont Level of Service D Standards for Minor Thoroughfares *

55 MPH	1 Lane Per Direction			1 Lane Per Direction WCLTL			
	Urban	Suburban	Rural	Urban	Suburban	Rural	
12 foot lanes	12900	14600	15100	14200	15900	16500	
11 foot lanes	12500	14100	14600	13700	15400	16000	
10 foot lanes	12000	13600	14100	13300	14800	15400	
9 foot lanes	11600	13100	13600	12800	14300	14900	

45 MPH	1 Lane Per Direction			1 Lane Per Direction WCLTL			
	Urban	Suburban	Rural	Urban	Suburban	Rural	
12 foot lanes	11700	12200	14600	13100	13200	16000	
11 foot lanes	11300	11800	14100	12700	12800	15500	
10 foot lanes	10900	11400	13600	12200	12300	14900	
9 foot lanes	10500	11000	13100	11800	11900	14400	

35 MPH	1 Lane Per Direction				1 Lane Per Direction WCLTL			
33 IVIPH	Urban	Suburban	Rural		Urban	Suburban	Rural	
12 foot lanes	10200	10200			11700	12700		
11 foot lanes	9900	9900			11300	12300		
10 foot lanes	9500	9500			10900	11900		
9 foot lanes	9200	9200			10500	11400		

25 MPH	1 La	1 Lane Per Direction			1 Lane Per Direction WCLTL		
	Urban	Suburban	Rural		Urban	Suburban	Rural
12 foot lane	s 10000				11300		
11 foot lane	s 9700				10900		
10 foot lane	s 9300				10500		
9 foot lanes	9000				10200		

Uses "Principal Arterials" and "Minor Arterials" Facility Types in NCLOS

See Appendix E1 for HCM 2000 Urban Arterial Equations
Use Appendix E3: Piedmont Minor Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Mountain Level of Service D Standards for Minor Thoroughfares *

55 MPH	1 La	ne Per Direc	tion	1 Lane Per Direction WCL		
33 IVIFIT	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	14000	14600	15100	15300	15900	16500
11 foot lanes	13500	14100	14600	14800	15400	16000
10 foot lanes	13100	13600	14100	14300	14800	15400
9 foot lanes	12600	13100	13600	13800	14300	14900

45 MPH	1 La	1 Lane Per Direction			1 Lane Per Direction WCLT		
43 WIFH	Urban	Suburban	Rural		Urban	Suburban	Rural
12 foot lanes	11700	12200	14600		13100	13200	16000
11 foot lanes	11300	11800	14100		12700	12800	15500
10 foot lanes	10900	11400	13600		12200	12300	14900
9 foot lanes	10500	11000	13100		11800	11900	14400

35 MPH	1 Lane Per Direction			1 Lane Per Direction WCLTL		
33 IVIPH	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	10200	10200		11500	12700	
11 foot lanes	9900	9900		11100	12300	
10 foot lanes	9500	9500		10700	11900	
9 foot lanes	9200	9200		10400	11400	

25 MPH	1 Lane Per Direction			1 Lane Per Direction WCLTL		
	Urban	Suburban	Rural	Urban	Suburban	Rural
12 foot lanes	10000			11300		
11 foot lanes	9700			10900		
10 foot lanes	9300			10500		
9 foot lanes	9000			10200		

Uses "Principal Arterials" and "Minor Arterials" Facility Types in NCLOS

See Appendix E1 for HCM 2000 Urban Arterial Equations
Use Appendix E4: Mountain Minor Thoroughfare Inputs for adjustments

^{*} Decrease in Lane Width Capacity calculated via 2000 Highway Capacity Manual lane-width adjustment factor for saturation flow rate

Level of Service D Standards for Rural 2-Lane Highways

Coastal 2-Lane		COASTAL	
Highway Standard	Minimum	Standard	Maximum
12-Foot Lanes	10500	12700*	
11-Foot Lanes	10000	12700	14700*#
10-Foot Lanes	9200	12000	14700 #
9-Foot Lanes	7700	10700	

Piedmont 2-Lane		PIEDMONT		
Highway Standard	Minimum	Standard	Maximum	
12-Foot Lanes	10300	12400*		
11-Foot Lanes	9900	12400	14300*#	
10-Foot Lanes	9000	11800		
9-Foot Lanes	7500	10500		

Mountain 2-Lane	MOU	INTAINS (L	evel)
Highway Standard	Minimum	Standard	Maximum
12-Foot Lanes	10200	12100*	
11-Foot Lanes	9800	12100	14000*#
10-Foot Lanes	8800	11700	14000 #
9-Foot Lanes	7400	10300	

Mountain 2-Lane	MOUNTAINS (Rolling)				
Highway Standard	Minimum	Standard	Maximum		
12-Foot Lanes	9600	12100*			
11-Foot Lanes	9100	12100	14000*#		
10-Foot Lanes	8200	11100	14000 #		
9-Foot Lanes	6300	9800			

Uses "2-Lane Highways" Facility Type in NCLOS

18

Best-case/Maximum conditions are less likely to occur where lane widths are below 11 feet. Use caution before selecting "Maximum" values for 9-ft or 10-ft lanes.

See Appendix F1 for HCM 2000 2-Lane Highway Equations

Use Appendix F2: Coastal Rural 2-Lane Highway Inputs for adjustments

Use Appendix F3: Piedmont Rural 2-Lane Highway Inputs for adjustments

Use Appendix F4: Mountain (Level) Rural 2-Lane Highway Inputs for adjustments

Use Appendix F5: Mountain (Rolling) Rural 2-Lane Highway Inputs for adjustments

^{*} All capacities calculated based on HCM 2000 procedures using HCS software. Under some conditions, two-lane highway capacity is not affected by lane width. This occurs where capacity is governed by Percent Time Spent Following rather than by Average Travel Speed.

Tyler Bray WS Atkins, Inc. 1616 East Millbrook Road Suite 310 Raleigh, NC 27609-4968

Tel: +1 919 876 6888 Fax: +1 919 876 6848

© WS Atkins, Inc. except where stated otherwise